3 measurement errors in variables
assume there exists an exact linear ralationship between true weights and true heigts:
Wi=B0+B1Hi. however ,weights and heights mersured with errors as follows,
Yi=Wi+wi and Xi=Hi+Vi
when wi and Vi are unarrelated with Yi and Xi respectively . to figure out the relationship between weights and heights,suppose you run the following regression:
Yi=B0+B1Xi+Ui for i=1,2,3,......,n
a) show that OLS estimator of B1 is biased toward zero.
b) under which anditions,the OLS estimator of B1 is unbiased?
1 discuss the five threats to the internal validity of regression studies. to regress beef demand (B)on the constant(C),the price of beef(p) and per capital disposable I name (YD),obtain dependent variable:B sample:1960 1987
method: last squares included observation:28
date: 12/12/07 time 15:34
variable coefficient std.error t-statistic prob
c 37.53605 10.04020 3.738575 0.0010
p -0.882623 0.164730 -5.357981 0.0000
YD 11.89115 1.762162 6.748045 0.0000
r-squared 0.658030 mean dependent var 106.6500
adjusted r-squared 0.630672 S.D.dependent var 10.00561
S.E of regression 6.080646 A kaike info criterion 6.549056
sum squared resid 924.3564 schhuerz criterion 6.691792
log likelihood -88.68678 F-statistic 24.05287
durbin-watsm stat 0.292597 prob( F-statistic) 0.000001
a) omitted variable bias
b) wray funtional form
c) sample selection bias
d)errors-in-variables bias
e) simultaneous bias
2 time series analusis of us inflation rates
define DINF=INF(-1).which is the first difference of inflation rate .before you run autoregession models,you did on ADF tests on .inflation rate.
ADF test statistic -2.546901 1% critical value* -3.4725
5% critial value -2.8797
10% critial value -2.5763
*mackinnon critical values for rejection of hypothesis of a unit not.
augmented dick-fuller test equation date:12/15/07 time: 18:50
dependent variable: D(INF) sample(adjusted): 1960:2 1999:4
method: least squares included observiations: 159 after adjusting end points
variable coefficient std.error t-statistic prob
INF(-1) -0.105769 0.041568 -2.546901 0.0118
D(INF(-1)) -0.189017 0.082751 -2.284149 0.0237
D(INF(-2)) -0.236062 0.079496 -2.969496 0.0035
D(INF(-3)) -0.207285 0.078366 2.651488 0.0035
C 0.480850 0.217344 2.212351 0.0089
0.0284
r-squared 0.231259 mean dependent var 0.017695
adjusted r-squared 0.2211291 S.D.dependent var 1.698389
S.E of regression 1.508327 A kaike info criterion 3.690821
sum squared resid 350.3579 schhuerz criterion 3.787327
log likelihood -298.4203 F-statistic 11.58186
durbin-watsm stat 1.994166 prob( F-statistic) 0.000000